Koneteollisuus yhdessä metalliteollisuuden kanssa kattaa kolmanneksen Suomen viennistä. Suomessa valmistetaan tyypillisesti korkealaatuisia investointikoneita, joilta vaaditaan korkeaa tuottavuutta ja hyötysuhdetta. Ultralujien terästen avulla koneista ja laitteista voidaan jatkossa valmistaa entistä kestävämpiä, keveämpiä, turvallisempia, kilpailukykyisempiä ja ympäristöystävällisempiä.
Ultralujien terästen lujuus perustuu usein lämpökäsittelyihin, hitsauksen aiheuttama kuumennus muuttaa teräksen ominaisuuksia ja kestävyyttä. Uudessa väitöstutkimuksessa testattiin hitsattuja ultralujia teräksiä eri käyttölämpötiloissa, ja osoitettiin ultralujien terästen mahdollisuuksia erilaisissa koneissa.
”Uuden väitöstutkimuksen tavoitteena on helpottaa uusien ultralujien rakenneterästen käyttöä laajasti koneteollisuudessa”, kertoo Oulun yliopiston väitöskirjatutkija Lassi Keränen.
Hitsauksen vaikutus ominaisuuksiin
Väitöskirjassa tutkitaan ultralujien terästen hyödyntämistä erilaisissa koneissa, ja keskitytään siihen, miten hitsaus vaikuttaa koneiden ominaisuuksiin. Laaja-alainen tutkimus yhdistää terästutkimuksen ja koneensuunnittelun osa-alueita.
”Ultralujat teräkset ovat jo nykypäivää autojen massateollisuudessa. Niillä vahvistetaan auton koria ja kevennetään painoa, jolloin energiankulutus ja päästöt vähenevät”, kertoo väitöstyön ohjaaja, professori Emil Kurvinen Oulun yliopistosta.
”Uusi väitöstyö käsittelee aihepiiriään poikkeuksellisen laaja-alaisesti, ja pyrkii helpottamaan ultralujien terästen käyttöä laajemmin koneiden suunnittelussa ja raskaassa teollisuudessa, jossa niitä käytetään vielä lähinnä yksittäisissä kappaleissa.”
Muutokset ominaisuuksiin
Ultralujien terästen käyttöä hidastaa aiempaa tarkemman suunnittelun tarve aina konseptisuunnittelusta materiaalinvalintaan, lujuuslaskentaan ja konepajavalmistukseen saakka.
Monet koneet valmistetaan hitsaamalla, missä materiaaliin tuodaan paljon lämpöä.
Koska ultralujien terästen lujuus perustuu usein lämpökäsittelyihin, hitsauksen aiheuttama kuumennus muuttaa teräksen ominaisuuksia, kuten sitkeyttä ja lujuutta, sekä aiheuttaa jäännösjännityksiä. Näitä muutoksia ei vielä täysin tunneta, ja ne vaikuttavat hitsatun koneenosan kestävyyteen merkittävästi.
”Tavanomaisen rakenneteräksen hitsaus on ammattilaisille arkipäivää. Jotta uusien ultralujien terästen lujuus ja ominaisuudet säilyvät, hitsaukseen tarvitaankin muun muassa tarkkaa hitsausprosessin hallintaa, laadunvalvontaa ja jälkikäsittelyitä”, Keränen kertoo.
Laajempaan hyödyntämiseen
Tutkimuksessa testattiin sekä hitsaamattomia että hitsattuja ultralujia teräksiä eri käyttölämpötiloissa -80 °C:n ja +1000:n °C välillä. Myös hitsauksen vaikutukset ultralujan teräksen jäännösjännitystilaan selvitettiin mittauksilla. Lisäksi tapaustutkimusten avulla osoitettiin ultralujien terästen mahdollisuuksia erilaisissa koneissa. Kehitettyjen mallien avulla voidaan arvioida koneenosan lopullisia materiaaliominaisuuksia, lujuutta, sitkeyttä ja hitsauksen vaikutuksia eri käyttölämpötiloissa.
”Suomessa ja Oulun yliopistossa on maailmanluokan osaamista ultralujissa teräksissä. Uusi väitöstutkimus edistää niiden hyödyntämistä kotimaisten vientituotteiden kilpailukyvyssä”, Kurvinen arvioi.
Diplomi-insinööri Lassi Keräsen koneensuunnittelun alaan kuuluva väitöskirja Ultralujat teräkset kestävien koneiden suunnittelussa (Ultrahigh-strength steels in the design of durable machines) tarkastettiin tammikuussa Oulun yliopistossa.